Efficient Matrix Sensing Using Rank-1 Gaussian Measurements
نویسندگان
چکیده
In this paper, we study the problem of low-rank matrix sensing where the goal is to reconstruct a matrix exactly using a small number of linear measurements. Existing methods for the problem either rely on measurement operators such as random element-wise sampling which cannot recover arbitrary low-rank matrices or require the measurement operator to satisfy the Restricted Isometry Property (RIP). However, RIP based linear operators are generally full rank and require large computation/storage cost for both measurement (encoding) as well as reconstruction (decoding). In this paper, we propose simple rank-one Gaussian measurement operators for matrix sensing that are significantly less expensive in terms of memory and computation for both encoding and decoding. Moreover, we show that the matrix can be reconstructed exactly using a simple alternating minimization method as well as a nuclear-norm minimization method. Finally, we demonstrate the effectiveness of the measurement scheme vis-a-vis existing RIP based methods.
منابع مشابه
Unicity conditions for low-rank matrix recovery
Low-rank matrix recovery addresses the problem of recovering an unknown low-rank matrix from few linear measurements. Nuclear-norm minimization is a tractible approach with a recent surge of strong theoretical backing. Analagous to the theory of compressed sensing, these results have required random measurements. For example, m ≥ Cnr Gaussian measurements are sufficient to recover any rank-r n×...
متن کاملUniqueness Conditions For Low-Rank Matrix Recovery
Low-rank matrix recovery addresses the problem of recovering an unknown low-rank matrix from few linear measurements. Nuclear-norm minimization is a tractable approach with a recent surge of strong theoretical backing. Analagous to the theory of compressed sensing, these results have required random measurements. For example, m ≥ Cnr Gaussian measurements are sufficient to recover any rank-r n ...
متن کاملCompressed Sensing and Matrix Completion with Constant Proportion of Corruptions
In this paper we improve existing results in the field of compressed sensing and matrix completion when sampled data may be grossly corrupted. We introduce three new theorems. 1) In compressed sensing, we show that if the m× n sensing matrix has independent Gaussian entries, then one can recover a sparse signal x exactly by tractable l1 minimization even if a positive fraction of the measuremen...
متن کاملUniversal low-rank matrix recovery from Pauli measurements
We study the problem of reconstructing an unknown matrix M of rank r and dimension d using O(rdpoly log d) Pauli measurements. This has applications in quantum state tomography, and is a non-commutative analogue of a well-known problem in compressed sensing: recovering a sparse vector from a few of its Fourier coefficients. We show that almost all sets of O(rd log d) Pauli measurements satisfy ...
متن کاملCompressive Sensing of Signals from a GMM with Sparse Precision Matrices
This paper is concerned with compressive sensing of signals drawn from a Gaussian mixture model (GMM) with sparse precision matrices. Previous work has shown: (i) a signal drawn from a given GMM can be perfectly reconstructed from r noise-free measurements if the (dominant) rank of each covariance matrix is less than r; (ii) a sparse Gaussian graphical model can be efficiently estimated from fu...
متن کامل